Cisplatin is a widely used chemotherapy drug that is first-line therapy for a variety of tumors. Unfortunately, its adverse effects on various normal tissues and organs, especially nephrotoxicity, threaten the life of patients. Although the mechanism of cisplatin nephrotoxicity has been confirmed to be related to oxidative stress, apoptosis of renal tubular epithelial cells and inflammatory response, there is no effective prevention strategy in the clinic. Here, we found that bisdemethoxycurcumin (BDMC), a natural compound, can significantly attenuates cisplatin-induced apoptosis of renal tubular epithelial cells in vitro at the concentration of 5-20 μM and has a significant protective effect on cisplatin-induced kidney injury in mice at the dose of 50 mg/kg. Mechanistically, BDMC attenuates cisplatin-induced apoptosis of renal tubular epithelial cells by inhibiting cisplatin-induced up-regulation of p53. Meanwhile, BDMC counteracts oxidative stress by inhibiting cisplatin-induced down-regulation of nuclear factor erythroid-2-related factor 2 (Nrf2). BDMC also significantly reduced the expression of intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1) proteins, as well as the expression and translocation of the p65 subunit of nuclear factor-κB (NF-κB p65) into the nucleus, all of which were increased in the kidney by cisplatin treatment. Collectively, BDMC might be an effective prevention strategy which could against cisplatin-induced nephrotoxicity, and our research may shed a new light on treatment of drug toxicity.
Bisdemethoxycurcumin attenuates cisplatin-induced renal injury through anti-apoptosis, anti-oxidant and anti-inflammatory
- 期刊:EUROPEAN JOURNAL OF PHARMACOLOGY
- 阅读原文
待确认