Endoplasmic Reticulum Stress (ER stress) is a series of cellular responses activated in response to misfolded and unfolded protein accumulation and calcium imbalance in the ER lumen. Cumulating evidence emphasized the crucial involvement of ER stress in cell survival, death, and proliferation. However, the precise process remained obscure, especially in esophageal squamous cell carcinoma (ESCC). In the present study, LARP1B was detected to be one of the genes with significant differential expression in the ER stress ESCC cell model by RNA sequencing. ESCC cells exposed to ER stress stimulants (thapsigargin and tunicamycin) showed increased expression levels of LARP1B. ER stress initiated the expression of LARP1B through activation of the ERN1-XBP1 pathway, with XBP1 acting as a transcription factor to boost LARP1B transcription. Up-regulation of LARP1B was detected in ESCC tissues and cell lines. Suppression of LARP1B effectively curtailed the growth of cells and hindered the progression of the cell cycle. By detecting the expression of some genes closely related to proliferation and cell cycle regulation, CCND1 was identified as the main contributor to the cell proliferation induced by LARP1B. As an RNA-binding protein, LARP1B has the capability to attach to CCND1 mRNA, thereby increasing its stability. Inhibiting CCND1 might partially counterbalance the proliferation-promoting impact of LARP1B overexpression on ESCC cells. These findings indicate that, upon ER stress, up-regulation of LARP1B, triggered by ERN1-XBP1 pathway, facilitates proliferation of ESCC cells through enhancing the mRNA stability of CCND1, and LARP1B may be used as a potential therapeutic target of ESCC.
文章引用产品列表
-
- PQ0012
- WB辅助产品
BCA法蛋白定量试剂盒
- ¥480.00
-
- CCS012
- 周期试剂盒
Cell Cycle Staining Kit 细胞周期检测试剂盒
- ¥390.00