Background: Spinal cord injury (SCI) is considered a central nervous system (CNS) disorder. Nuclear factor kappa B (NF-κB) regulates inflammatory responses in the CNS and is implicated in SCI pathogenesis. The mechanism(s) through which NF-κB contributes to the neuroinflammation observed during SCI however remains unclear. Methods: SCI rat models were created using the weight drop method and separated into Sham, SCI and SCI+NF-κB inhibitor groups (n = 6 rats per-group). We used Hematoxylin-Eosin Staining (H&E) and Nissl staining for detecting histological changes in the spinal cord. Basso-Beattie-Bresnahan (BBB) behavioral scores were utilized for assessing functional locomotion recovery. Mouse BV2 microglia were exposed to lipopolysaccharide (LPS) to mimic SCI-induced microglial inflammation in vitro. Results: Inhibition of NF-κB using JSH-23 alleviated inflammation and neuronal injury in SCI rats’ spinal cords, leading to improved locomotion recovery (p < 0.05). NF-κB inhibition reduced expression levels of CD86, interleukin-6 (IL-6), IL-1β, and inducible Nitric Oxide Synthase (iNOS), and improved expression levels of CD206, IL-4, and tissue growth factor-beta (TGF-β) in both LPS-treated microglia and SCI rats’ spinal cords (p < 0.05). Inhibition of NF-κB also effectively suppressed mitochondrial fission, evidenced by the reduced phosphorylation of dynamin-related protein 1 (DRP1) at Ser616 (p < 0.001). Conclusion: We show that inhibition of the NF-κB/DRP1 axis prevents mitochondrial fission and suppresses pro-inflammatory microglia polarization, promoting neurological recovery in SCI. Targeting the NF-κB/DRP1 axis therefore represents a novel approach for SCI.
文章引用产品列表
-
- F21480A03
- 流式抗体(新品), 流式抗体
Anti-Mouse F4/80, APC (Clone:BM8.1)流式抗体 (新品)
- ¥584.00 – ¥1,280.00
-
- F2108601
- 流式抗体(新品), 流式抗体
Anti-Mouse CD86 (B7-2), FITC (Clone:GL-1) 流式抗体 (新品)
- ¥600.00 – ¥1,320.00