DNMT3A-mediated epigenetic silencing of SOX17 contributes to endothelial cell migration and fibroblast activation in wound healing

  • 类型:
  • 作者:Xiaoping Yu, Xiaoting Ma, Junli Zhou
  • 期刊:PLoS One
  • 阅读原文

Background
Wound healing, especially impaired chronic wound healing, poses a tremendous challenge for modern medicine. Understanding the molecular mechanisms underlying wound healing is essential to the development of novel therapeutic strategies.

Methods
A wound-healing mouse model was established to analyze histopathological alterations during wound healing, and the expression of SRY-box transcription factor 17 (SOX17), DNA methyltransferase 3 alpha (DNMT3A), and a specific fibroblast marker S100 calcium-binding protein A4 (S100A4) in wound skin tissues was tested by immunofluorescence (IF) assay. Cell proliferation and migration were evaluated using 5-ethynyl-2′-deoxyuridine (EdU) and Transwell migration assays. RT-qPCR and western blotting were used to measure RNA and protein expression. Enzyme-linked immunosorbent assay (ELISA) was performed to detect the secretion of transforming growth factor-beta (TGF-β). Chromatin immunoprecipitation followed by qPCR (ChIP-qPCR) and DNA pull-down assays were performed to confirm the interaction between DNMT3A and the CpG island of the SOX17 promoter. Promoter methylation was examined by pyrosequencing.

Results
SOX17 and DNMT3A expression were regularly regulated during the different phases of wound healing. SOX17 knockdown promoted HUVEC migration and the production and release of TGF-β. Through establishing an endothelial cells-fibroblasts co-culture model, we found that SOX17 knockdown in HUVECs activated HFF-1 fibroblasts, which expressed α-smooth muscle actin (α-SMA) and type I collagen (COL1). DNMT3A overexpression reduces SOX17 mRNA levels. ChIP-qPCR and DNA pull-down assays verified the interaction between DNMT3A and CpG island in the SOX17 promoter region. Pyrosequencing confirmed that DNMT3A overexpression increased the methylation level of the SOX17 promoter.

Conclusion
DNMT3A-mediated downregulation of SOX17 facilitates wound healing by promoting endothelial cell migration and fibroblast activation.

文章引用产品列表