Notoginsenoside R1 protects against hypobaric hypoxia-induced high-altitude pulmonary edema by inhibiting apoptosis via ERK1/2-P90rsk-BAD ignaling pathway

  • 类型:
  • 作者:Caixia Pei, Nan Jia, Yilan Wang, Sijing Zhao, Zherui Shen, Shihua Shi, Demei Huang, Yongcan Wu, Xiaomin Wang, Shuiqin Li, Yacong He, Zhenxing Wang
  • 期刊:EUROPEAN JOURNAL OF PHARMACOLOGY
  • 阅读原文

High-altitude pulmonary edema (HAPE) is a potentially fatal disease. Notoginsenoside R1 is a novel phytoestrogen with anti-inflammatory, antioxidant and anti-apoptosis properties. However, its effects and underlying mechanisms in the protection of hypobaric hypoxia-induced HAPE rats remains unclear. This study aimed to explore the protective effects and underlying mechanisms of Notoginsenoside R1 in hypobaric hypoxia-induced HAPE. We found that Notoginsenoside R1 alleviated the lung tissue injury, decreased lung wet/dry ratio, and reduced inflammation and oxidative stress. Additionally, Notoginsenoside R1 ameliorated the changes in arterial blood gas, decreased the total protein concentration in bronchoalveolar lavage fluid, and inhibited the occurrence of apoptosis caused by HAPE. In the process of further exploration of the mechanism, it was found that Notoginsenoside R1 could promote the activation of ERK1/2-P90rsk-BAD signaling pathway, and the effect of Notoginsenoside R1 was attenuated after the use of ERK1/2 inhibitor U0126. Our study indicated that the protective effects of Notoginsenoside R1 against HAPE were mainly related to the inhibition of inflammation, oxidative stress, and apoptosis. Notoginsenoside R1 may be a potential candidate for preventing HAPE.

文章引用产品列表