The ketogenic diet (KD) is a low carbohydrate and high-fat protein diet. It plays a protective role in neurodegenerative diseases by elevating the levels of ketone bodies in blood, regulating central and peripheral metabolism and mitochondrial functions, inhibiting neuroinflammation and oxidative stress, and altering the gut microbiota. However, studies on ketogenic therapy for Parkinson’s disease (PD) are still in their infancy. Therefore, we examined the possible protective effect of KD in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model, examined the mouse gut microbiota and its metabolites, and performed transcriptomics and metabolomics on the substantia nigra of mice. Our results showed that a long-term medium-chain triglyceride KD (MCT-KD) significantly reduced MPTP-induced damage to dopaminergic (DA) neurons, exerted antioxidant stress through the PI3K/Akt/Nrf2 pathway, and reversed oxidative stress in DA neurons. The MCT-KD also reduced mitochondrial loss, promoted ATP production, and inhibited the activation of microglia to protect DA neurons in MPTP-induced PD mice. MCT-KD altered the gut microbiota and consequently changed the metabolism of substantia nigra neurons through gut microbiota metabolites. Compared to the MPTP group, MCT-KD increased the abundance of gut microbiota, including Blautia and Romboutsia. MCT-KD also affects purine metabolism in the substantia nigra pars compacta (SNpc) by altering fecal metabolites. This study shows that MCT-KD has multiple protective effects against PD.
Neuroprotective effect of a medium-chain triglyceride ketogenic diet on MPTP-induced Parkinson’s disease mice: a combination of transcriptomics and metabolomics in the substantia nigra and fecal microbiome
- 期刊:Cell Death Discovery
- 阅读原文