Hyperhomocysteinemia activates NLRP3 inflammasome to cause hepatic steatosis and insulin resistance via MDM2-mediated ubiquitination of HSF1

  • 类型:
  • 作者:Wenjing Xiang, Yang Yang, Liangkun Weng, Zhiming Ye, Ping Ding, Huayu Li, Jia Sun, Cheng Zeng
  • 期刊:INTERNATIONAL IMMUNOPHARMACOLOGY
  • 阅读原文

Hyperhomocysteinemia (HHcy) is associated with nonalcoholic fatty liver disease (NAFLD) and insulin resistance (IR). However, the underlying mechanism is still unknown. Recent studies have demonstrated that NLRP3 inflammasome activation plays a vital role in NAFLD and IR. Our study aimed to explore whether NLRP3 inflammasome contributed to HHcy-induced NAFLD and IR as well as dissected the underlying mechanism. C57BL/6 mice were fed a high-methionine diet (HMD) for 8?weeks to establish the HHcy mouse model. Compared with a chow diet, HMD induced hepatic steatosis (HS) and IR as well as activation of hepatic NLRP3 inflammasome. Moreover, HHcy-induced NAFLD and IR characterization disclosed that NLRP3 inflammasome activation occurred in liver tissue of HMD-fed mice, but was very marginal in either NLRP3 ?/? or Caspase-1 ?/? mice. Mechanistically, high levels of homocysteine (Hcy) up-regulated the expression of mouse double minute 2 homolog (MDM2), which directly ubiquitinates heat shock transcription factor 1 (HSF1) and consequently activated hepatic NLRP3 inflammasome in vivo and in vitro . In addition, in vitro experiments showed P300-mediated HSF1 acetylation at K298 hindered MDM2-mediated ubiquitination of HSF1 at K372, which plays important role in determining the HSF1 level. Importantly, either inhibition of MDM2 by JNJ-165 or activation of HSF1 by HSF1A reversed HMD-induced hepatic NLRP3 inflammasome, and consequently alleviated HS and IR in mice. This study demonstrates that NLRP3 inflammasome activation contributes to HHcy-induced NAFLD and IR, and further identified that HSF1 as a new substrate of MDM2 and its decrease on MDM2-mediated ubiquitination at K372 modulates NLRP3 inflammasome activation. These findings may provide novel therapeutic strategies aimed at halting HS or IR.

文章引用产品列表