Autophagy ameliorates Pseudomonas aeruginosa-infected diabetic wounds by regulating the toll-like receptor 4/myeloid differentiation factor 88 pathway

  • 类型:
  • 作者:Xiaoyan Ji, Peng Jin, Pei Yu, Penghua Wang
  • 期刊:WOUND REPAIR AND REGENERATION
  • 阅读原文

Diabetic foot ulcers (DFUs) are among the most common complications in patients with diabetes and a leading cause of lower extremity amputation. DFUs are exacerbated by prolonged bacterial infection; therefore, there is an urgent need for effective treatments to alleviate the burden associated with this condition. Although autophagy plays a unique role in pathogen phagocytosis and inflammation, its role in diabetic foot infections (DFIs) remains unclear. Pseudomonas aeruginosa (PA) is the most frequently isolated gram-negative bacterium from DFUs. Here, we evaluated the role of autophagy in ameliorating PA infection in wounds in a diabetic rat model and a bone marrow-derived macrophage (BMDM) hyperglycemia model. Both models were pretreated with or without rapamycin (RAPA) and then infected with or without PA. Pretreatment of rats with RAPA significantly enhanced PA phagocytosis, suppressed wound inflammation, reduced the M1:M2 macrophage ratio, and improved wound healing. In vitro investigation of the underlying mechanisms revealed that enhanced autophagy resulted in decreased macrophage secretion of inflammatory factors such as TNF-α, IL-6, and IL-1β but increased that of IL-10 in response to PA infection. Additionally, RAPA treatment significantly enhanced autophagy in macrophages by increasing LC3 and beclin-1 levels, which led to altered macrophage function. Furthermore, RAPA blocked the PA-induced TLR4/MyD88 pathway to regulate macrophage polarisation and inflammatory cytokine production, which was validated by RNA interference and use of the autophagy inhibitor 3-methyladenine (3-MA). These findings suggest enhancing autophagy as a novel therapeutic strategy against PA infection to ultimately improve diabetic wound healing.

文章引用产品列表