Tilianin Protects against Nonalcoholic Fatty Liver Disease in Early Obesity Mice

  • 类型:
  • 作者:Sen-Mao Xu, Yao Xu, Xian-Gao Cheng, Li-Qi Yang
  • 期刊:BIOLOGICAL & PHARMACEUTICAL BULLETIN
  • 阅读原文

Non-alcoholic fatty liver disease (NAFLD) has emerged as one of the most frequent types of liver disease in pediatric populations with obesity. Tilianin has multiple biological activities including anti-inflammatory and antioxidant. Here, we aim to explore the functions and possible mechanisms of tilianin on NAFLD in obese children. A high-fat high-carbohydrate (HFHC) diet was used to feed 21-d-old mice. Tilianin was administered at a dose of 10 or 20?mg/kg daily. HFHC-fed mice gained weight, increased liver index. The liver showed hepatocyte ballooning, inflammatory infiltration, and steatosis. Elevated levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) and reduced the high-density lipoprotein cholesterol (HDL-C) level were found in HFHC-fed mice. Administration of tilianin significantly reduced these impairments. We further evaluated proteins related to lipid metabolism and observed that LXRα, SREBP-1c, FAS and ACC1 expression were blunted following tilianin administration. In addition, tilianin suppressed reactive oxygen species (ROS) overproduction and lipid peroxide 4-Hydroxynonenal expression, ascribed to its oxidative stress-modulating capacity. Tilianin also reversed the increase in F4/80 expression and proinflammatory cytokine levels. Of note, tilianin administration resulted in decreased protein levels of active caspase-1 and NOD-like receptor protein 3 (NLRP3) in HFHC-fed mice. Our study suggests that tilianin may ameliorate NAFLD in early obese mice by modulating lipids metabolism, oxidative stress, and inflammation, which may in part involve inhibiting NLRP3 inflammasome activation.

文章引用产品列表